Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Healthcare (Basel) ; 10(12)2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2142732

ABSTRACT

To date, coronavirus disease 2019 (COVID-19) and its variants have been reported as a novel public health concern threatening us worldwide. The presence of Klebsiella pneumoniae in COVID-19-infected patients is a major problem due to its resistance to multiple antibiotics, and it can possibly make the management of COVID-19 in patients more problematic. The impact of co-infection by K. pneumoniae on COVID-19 patients was explored in the current review. The spread of K. pneumoniae as a co-infection among critically ill COVID-19 patients, particularly throughout hospitalization, was identified and recorded via numerous reports. Alarmingly, the extensive application of antibiotics in the initial diagnosis of COVID-19 infection may reduce bacterial co-infection, but it increases the antibiotic resistance of bacteria such as the strains of K. pneumoniae. The correct detection of multidrug-resistant K. pneumoniae can offer a supportive reference for the diagnosis and therapeutic management of COVID-19 patients. Furthermore, the prevention and control of K. pneumoniae are required to minimize the risk of COVID-19. The aim of the present review is, therefore, to report on the virulence factors of the K. pneumonia genotypes, the drug resistance of K. pneumonia, and the impact of K. pneumoniae co-infection with COVID-19 on patients through a study of the published scientific papers, reports, and case studies.

2.
Molecules ; 27(10)2022 May 16.
Article in English | MEDLINE | ID: covidwho-1875714

ABSTRACT

Natural origin molecules represent reliable and excellent sources to overcome some medicinal problems. The study of anticancer, anticoagulant, and antimicrobial activities of Thevetia peruviana latex were the aim of the current research. An investigation using high-performance liquid chromatography (HPLC) revealed that the major content of the flavonoids are rutin (11.45 µg/mL), quersestin (7.15 µg/mL), naringin (5.25 µg/mL), and hisperdin (6.07 µg/mL), while phenolic had chlorogenic (12.39 µg/mL), syringenic (7.45 µg/mL), and ferulic (5.07 µg/mL) acids in latex of T. peruviana. Via 1,1-diphenyl-2- picrylhydrazyl (DPPH) radical scavenging, the experiment demonstrated that latex had a potent antioxidant activity with the IC50 43.9 µg/mL for scavenging DPPH. Hemolysis inhibition was 58.5% at 1000 µg/mL of latex compared with 91.0% at 200 µg/mL of indomethacin as positive control. Negligible anticoagulant properties of latex were reported where the recorded time was 11.9 s of prothrombin time (PT) and 29.2 s of the activated partial thromboplastin time (APTT) at 25 µg/mL, compared with the same concentration of heparin (PT 94.6 s and APPT 117.7 s). The anticancer potential of latex was recorded against PC-3 (97.11% toxicity) and MCF-7 (96.23% toxicity) at 1000 µg/mL with IC50 48.26 µg/mL and 40.31 µg/mL, respectively. Disc diffusion assessment for antimicrobial activity recorded that the most sensitive tested microorganisms to latex were Bacillus subtilis followed by Escherichia coli, with an inhibition zone (IZ) of 31 mm with minimum inhibitory concentration (MIC) (10.2 µg/mL) and 30 mm (MIC, 12.51 µg/mL), respectively. Moreover, Candida albicans was sensitive (IZ, 28 mm) to latex, unlike black fungus (Mucor circinelloides). TEM examination exhibited ultrastructure changes in cell walls and cell membranes of Staphylococcus aureus and Pseudomonas aeruginosa treated with latex. Energy scores of the molecular docking of chlorogenic acid with E. coli DNA (7C7N), and Rutin with human prostate-specific antigen (3QUM) and breast cancer-associated protein (1JNX), result in excellent harmony with the experimental results. The outcome of research recommended that the latex is rich in constituents and considered a promising source that contributes to fighting cancer and pathogenic microorganisms.


Subject(s)
Anti-Infective Agents , Thevetia , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anticoagulants/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Escherichia coli , Humans , Latex , Molecular Docking Simulation , Rutin
3.
Sci Rep ; 12(1): 5914, 2022 04 08.
Article in English | MEDLINE | ID: covidwho-1784027

ABSTRACT

Secondary plant metabolites remain one of the key sources of therapeutic agents despite the development of new approaches for the discovery of medicinal drugs. In the current study, chemical analysis, and biological activities of Kei apple (Dovyalis caffra) methanolic extract were evaluated. Chemical analysis was performed using HPLC and GC-MS. Antiviral and anticancer effect were assessed using the crystal violet technique and activity against human liver cells (HepG2), respectively. Antibacterial activity was tested with the disc diffusion method. The obtained results showed that chlorogenic acid (2107.96 ± 0.07 µg/g), catechin (168 ± 0.58 µg/g), and gallic acid (15.66 ± 0.02 µg/g) were the main bioactive compounds identified by HPLC techniques. While, compounds containing furan moieties, as well as levoglucosenone, isochiapin B, dotriacontane, 7-nonynoic acid and tert-hexadecanethiol, with different biological activities were identified by GC-MS. Additionally, inhibition of 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) scavenging was 79.25% at 2000 µg/mL, indicating its antioxidant activity with IC50 of 728.20 ± 1.04 µg/mL. The tested extract exhibited potential anticancer activity (58.90% toxicity) against HepG2 cells at 1000 µg/mL. Potential bacterial inhibition was observed mainly against Escherichia coli and Proteus vulgaris, followed by Staphylococcus aureus and Bacillus subtilis with a diameter of growth inhibition ranging from 13 to 24 mm. While weak activities were recorded for fungi Candida albicans (10 mm). The extract showed mild antiviral activity against human coronavirus 229E with a selective index (SI) of 10.4, but not against human H3N2 (SI of 0.67). The molecular docking study's energy ratings were in good promise with the experiment documents of antibacterial and antiviral activities. The findings suggest that D. caffra juice extract is a potential candidate for further experiments to assess its use as potential alternative therapeutic agent.


Subject(s)
Antioxidants , Salicaceae , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antiviral Agents/analysis , Antiviral Agents/pharmacology , Fruit/chemistry , Humans , Influenza A Virus, H3N2 Subtype , Molecular Docking Simulation , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL